67 research outputs found

    Ensayo y procedimiento para la evaluación de la biodegradabilidad rápida de aguas mediante Psuedomonas Putida

    Get PDF
    Número de publicación: ES2470819 A1 (24.06.2014) También publicado como: ES2470819 B1 (05.05.2015) Número de Solicitud: Consulta de Expedientes OEPM (C.E.O.) P201300029(21.12.2012)Ensayo y procedimiento para la evaluación de la biodegradabilidad rápida de aguas mediante Pseudomonas putida. La invención consiste en un nuevo kit y procedimiento de evaluación de la "biodegradabilidad rápida" de aguas contaminadas. El test se basa en el empleo de unas cápsulas que contienen una proporción adecuada de bacteria Pseudomonas putida liofilizada y sales minerales que se añaden al agua cuya biodegradabilidad desea evaluarse. Durante tres días de incubación a 30°C, se monitoriza la Demanda Química de Oxígeno (DQO) y se calcula la eficiencia de biodegradabilidad al final del ensayo. Este test está dirigido al sector del tratamiento de efluentes acuosos, especialmente de origen industrial para realizar el seguimiento de la biodegradabilidad. El método resuelve los problemas de repetibilidad y tiempo de ensayo de los métodos tradicionales.Universidad de Almerí

    Hydroxyl radical as an unlikely key intermediate in the photodegradation of emerging pollutants

    Full text link
    This is the accepted version of the following article: Rodriguez-Muñiz, G. M., Gomis, J., Arques, A., Amat, A. M., Marin, M. L. and Miranda, M. A. (2014), Hydroxyl Radical as an Unlikely Key Intermediate in the Photodegradation of Emerging Pollutants. Photochemistry and Photobiology, 90: 1467–1469, which has been published in final form at http://dx.doi.org/10.1111/php.12325.In this work, a kinetic model, in combination with time-resolved experiments, is applied to assess the involvement of OH in the photodegradation of emerging pollutants (EPs) by means of advanced oxidation processes. In contrast with the general assumption, quenching of the short-lived OH in the real waters by the (highly diluted) EPs must be very inefficient, so removal of EPs cannot purely rely on the generation and reaction of OH. This suggests that more complex pathways have to be considered to explain the photodegradation of EPs actually achieved under the employed oxidative conditions, possibly involving other reactive species with longer lifetimes or chain degradation processes.This work was supported by the Spanish Government (Projects CTQ2012-38754-C03-03 and CTQ2012-38754-C03-02) and Technical University of Valencia (Predoctoral fellowship for J. Gomis).Rodríguez Muñiz, GM.; Gomis Vicens, J.; Arqués Sanz, A.; Amat Payá, AM.; Marín García, ML.; Miranda Alonso, MÁ. (2014). Hydroxyl radical as an unlikely key intermediate in the photodegradation of emerging pollutants. Photochemistry and Photobiology. 90(6):1467-1469. doi:10.1111/php.12325S14671469906Farré, M. la, Pérez, S., Kantiani, L., & Barceló, D. (2008). Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends in Analytical Chemistry, 27(11), 991-1007. doi:10.1016/j.trac.2008.09.010Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018Marin, M. L., Santos-Juanes, L., Arques, A., Amat, A. M., & Miranda, M. A. (2011). Organic Photocatalysts for the Oxidation of Pollutants and Model Compounds. Chemical Reviews, 112(3), 1710-1750. doi:10.1021/cr2000543Fatta-Kassinos, D., Meric, S., & Nikolaou, A. (2010). Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399(1), 251-275. doi:10.1007/s00216-010-4300-9SIES, H. (1993). Strategies of antioxidant defense. European Journal of Biochemistry, 215(2), 213-219. doi:10.1111/j.1432-1033.1993.tb18025.xChen, J., Pehkonen, S. O., & Lin, C.-J. (2003). Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Research, 37(10), 2496-2504. doi:10.1016/s0043-1354(03)00039-3Zeng, T., & Arnold, W. A. (2012). Pesticide Photolysis in Prairie Potholes: Probing Photosensitized Processes. Environmental Science & Technology, 47(13), 6735-6745. doi:10.1021/es3030808Wols, B. A., & Hofman-Caris, C. H. M. (2012). Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Research, 46(9), 2815-2827. doi:10.1016/j.watres.2012.03.036Santoke, H., Song, W., Cooper, W. J., & Peake, B. M. (2012). Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid. Journal of Hazardous Materials, 217-218, 382-390. doi:10.1016/j.jhazmat.2012.03.049Xu, H., Cooper, W. J., Jung, J., & Song, W. (2011). Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Research, 45(2), 632-638. doi:10.1016/j.watres.2010.08.024Canonica, S., & Freiburghaus, M. (2001). Electron-Rich Phenols for Probing the Photochemical Reactivity of Freshwaters. Environmental Science & Technology, 35(4), 690-695. doi:10.1021/es0011360Jacobs, L. E., Fimmen, R. L., Chin, Y.-P., Mash, H. E., & Weavers, L. K. (2011). Fulvic acid mediated photolysis of ibuprofen in water. Water Research, 45(15), 4449-4458. doi:10.1016/j.watres.2011.05.041Packer, J. L., Werner, J. J., Latch, D. E., McNeill, K., & Arnold, W. A. (2003). Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Sciences - Research Across Boundaries, 65(4), 342-351. doi:10.1007/s00027-003-0671-8Dong, M. M., & Rosario-Ortiz, F. L. (2012). Photochemical Formation of Hydroxyl Radical from Effluent Organic Matter. Environmental Science & Technology, 46(7), 3788-3794. doi:10.1021/es2043454DeMatteo, M. P., Poole, J. S., Shi, X., Sachdeva, R., Hatcher, P. G., Hadad, C. M., & Platz, M. S. (2005). On the Electrophilicity of Hydroxyl Radical:  A Laser Flash Photolysis and Computational Study. Journal of the American Chemical Society, 127(19), 7094-7109. doi:10.1021/ja043692qPoole, J. S., Shi, X., Hadad, C. M., & Platz, M. S. (2005). Reaction of Hydroxyl Radical with Aromatic Hydrocarbons in Nonaqueous Solutions:  A Laser Flash Photolysis Study in Acetonitrile. The Journal of Physical Chemistry A, 109(11), 2547-2551. doi:10.1021/jp0452150Rodríguez-Muñiz, G. M., Marin, M. L., Lhiaubet-Vallet, V., & Miranda, M. A. (2012). Reactivity of Nucleosides with a Hydroxyl Radical in Non-aqueous Medium. Chemistry - A European Journal, 18(26), 8024-8027. doi:10.1002/chem.20120109

    Hepatic progenitor cells of biliary origin with liver repopulation capacity

    Get PDF
    Hepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease
    corecore